A mathematical relationship between the number of isomers of alkenes and alkynes: a result established from the enumeration of isomers of alkenes from alkyl biradicals

Ching-Wan Lam
Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, People's Republic of China
E-mail: ching-wanlam@cuhk.edu.hk

Received 16 July 1997; revised 24 November 1997

Abstract

A simple and fast algorithm for enumerating alkene isomers is described. This algorithm is based on a 2 -step hypothetical chemical reaction. In the first step, an alkane molecule loses two protons becoming an alkyl biradical. In the second step, two alkyl biradicals react to form an alkene molecule. By using two sequential recursive algorithms, the number of computational terms in the enumeration process is much less than when using the HenzeBlair algorithm. By using this simple algorithm, the numbers of constitutional isomers of alkenes and alkynes for carbon content greater than 30 are easily enumerated. In addition, through this algorithm, a mathematical relationship between the number of constitutional isomers of alkenes and alkynes has been established for the first time.

Henze and Blair have developed a number of recursive algorithms for enumerating the constitutional isomers of alkanes [4] and related acyclic structures [6]. One of these recursive algorithms calculated the number of constitutional isomers of alkenes derived from alkyl alcohols [5]. However, the number of computational terms for enumeration of alkenes increased exponentially with the carbon content, e.g., 249 terms for carbon content 30 and 551 terms for carbon content 40 . Besides requiring tedious and cumbersome calculation, this algorithm is prone to making errors by manual calculation [5,6]. Here, a simple and fast recursive algorithm has been developed and the result can be easily obtained. In addition, a mathematical relationship between the number of constitutional isomers of alkenes and alkynes has been established for the first time.

The present approach is based on the formation of alkyl biradicals [9]. These alkyl biradicals can be imagined to be formed by a hypothetical chemical reaction in which an alkane molecule loses two protons and becomes an alkyl biradical, i.e., with two unpaired electrons. Interestingly, not all possible alkane isomers are required to form all possible alkyl biradicals as one alkane molecule has many different sites where

[^0]

Figure 1. Top: mechanism by which an alkyl biradical is formed; Middle: two alkyl biradicals combine to form an alkene molecule; Bottom: note the marked similarity between the constitutional isomers of alkyl biradicals and alkynes.
the two protons can be lost. When a single alkyl biradical combines with another alkyl biradical, the four electrons will be paired up and form a double bond. The reaction is depicted in figure 1. If an alkyl biradical has k carbons, S_{i} and S_{j} denote the number of constitutional isomers of the two alkyl groups with i and j carbons, respectively, and B_{k} denotes the total number of constitutional isomers of the alkyl biradical of carbon content k, where $k=i+j+1$, we will have

$$
B_{k}=S_{0} \cdot S_{k-1}+S_{1} \cdot S_{k-2}+\cdots+S_{(k / 2)-1} \cdot S_{k / 2} \quad \text { when } k \text { is even, }
$$

or
$B_{k}=S_{0} \cdot S_{k-1}+S_{1} \cdot S_{k-2}+\cdots+(1 / 2) \cdot S_{(k-1) / 2} \cdot\left(S_{(k-1) / 2}+1\right) \quad$ when k is odd.
For example, if k is equal to 10 ,

$$
\begin{aligned}
B_{10} & =S_{0} \cdot S_{9}+S_{1} \cdot S_{8}+S_{2} \cdot S_{7}+S_{3} \cdot S_{6}+S_{4} \cdot S_{5} \\
& =1 \cdot 211+1 \cdot 89+1 \cdot 39+2 \cdot 17+4 \cdot 8 \\
& =211+89+39+34+32 \\
& =405 .
\end{aligned}
$$

If k is equal to 11 ,

$$
\begin{aligned}
B_{11} & =S_{0} \cdot S_{10}+S_{1} \cdot S_{9}+S_{2} \cdot S_{8}+S_{3} \cdot S_{7}+S_{4} \cdot S_{6}+(1 / 2) \cdot S_{5} \cdot\left(S_{5}+1\right) \\
& =1 \cdot 507+1 \cdot 211+1 \cdot 89+2 \cdot 39+4 \cdot 17+(1 / 2) \cdot 8 \cdot 9 \\
& =507+211+89+78+68+36 \\
& =989 .
\end{aligned}
$$

All the S_{i} values are taken from papers of Henze and Blair [3], Perry [8], Davis et al. [2] and Trinajstic [10]. The results, generated from a computer program which calculates all B_{i} values from $i=1$ to 32 and B_{i} values from $i=33$ to 50 calculated by Mathematica ${ }^{\mathrm{TM}}$, are shown in table 1 .

Table 1
Number of constitutional isomers of alkyl biradicals, alkynes and alkenes.

n	$B_{i}=T_{i+1}$	E_{i}
1	1	
2	1	1
3	2	1
4	3	3
5	7	5
6	14	13
7	32	27
8	72	66
9	171	153
10	405	377
11	989	914
12	2426	2281
13	6045	5690
14	15167	14397
15	38422	36564
16	97925	93650
17	251275	240916
18	648061	623338
19	1679869	1619346
20	4372872	4224993
21	11428365	11062046
22	29972078	29062341
23	78859809	76581151
24	208094977	202365823
25	550603722	536113477
26	1460457242	1423665699
27	3882682803	3788843391
28	10344102122	10103901486
29	27612603765	26995498151
30	73844151259	72253682560
31	197818389539	193706542776
32	530775701520	520115491654
33	1426284383289	1398573129520
34	3838066701350	3765852863965
35	10341758769406	10153132533267
36	27900947721908	27407165417067
37	75362644825968	74067347237840
38	203787850635992	200383361535700
39	551645375673949	542680628199354
40	1494781478155753	1471134003594656

Table 1
(Continued.)

n	$B_{i}=T_{i+1}$	E_{i}
41	4054242571711886	3991760770564545
42	11006161817116528	10840810373009111
43	29904564722290758	29466321827521532
44	81319947893937569	80156778216023220
45	221308699013145314	218217238001308458
46	602735147429051222	594507985135689828
47	1642733167881428721	1620811333794745303
48	4480296443626480469	4421814637212588436
49	12227375730982990115	12071183364508399476
50	33391418880319176319	32973806480104397769

n : number of carbon; B_{i} : number of constitutional isomers of an alkyl biradical with i carbon atoms; T_{i+1} : number of constitutional isomers of an alkyne molecule with $i+1$ carbon atoms; E_{i} : number of constitutional isomers of an alkene with i carbon atoms.

Now, we will use these alkyl biradicals to synthesize alkenes by combining two alkyl biradicals (figure 1). In this model, both cis- and trans-alkenes have equal chances to be formed. Using the same type of recursive algorithm as above, for an alkene molecule containing k carbon atoms, the number of constitutional isomers, E_{k}, is equal to
$E_{k}=B_{1} \cdot B_{k-1}+B_{2} \cdot B_{k-2}+B_{3} \cdot B_{k-3}+\cdots+(1 / 2) \cdot B_{k / 2} \cdot\left(B_{k / 2}+1\right) \quad$ when k is even, or
$E_{k}=B_{1} \cdot B_{k-1}+B_{2} \cdot B_{k-2}+B_{3} \cdot B_{k-3}+\cdots+B_{(k-1) / 2} \cdot B_{(k+1) / 2} \quad$ when k is odd.
For example, if k is equal to 13 ,

$$
\begin{aligned}
E_{13} & =B_{1} \cdot B_{12}+B_{2} \cdot B_{11}+B_{3} \cdot B_{10}+B_{4} \cdot B_{9}+B_{5} \cdot B_{8}+B_{6} \cdot B_{7} \\
& =1 \cdot 2426+1 \cdot 989+2 \cdot 405+3 \cdot 171+7 \cdot 72+14 \cdot 32 \\
& =2426+989+810+513+504+448 \\
& =5690 .
\end{aligned}
$$

If k is equal to 14 ,

$$
\begin{aligned}
E_{14}= & B_{1} \cdot B_{13}+B_{2} \cdot B_{12}+B_{3} \cdot B_{11}+B_{4} \cdot B_{10}+B_{5} \cdot B_{9}+B_{6} \cdot B_{8} \\
& +(1 / 2) \cdot B_{7} \cdot\left(B_{7}+1\right) \\
= & 1 \cdot 6045+1 \cdot 2426+2 \cdot 989+3 \cdot 405+7 \cdot 171+14 \cdot 72+(1 / 2) \cdot 32 \cdot 33 \\
= & 6045+2426+1978+1215+1197+1008+528 \\
= & 14397 .
\end{aligned}
$$

Alternatively, the above equations can be written in matrix form as a single matrix equation:

$$
\left(\begin{array}{cccccccc}
B_{2} & 0 & 0 & \ldots & \ldots & \ldots & 0 & 0 \\
B_{4} & B_{3} & 0 & \ldots & \cdots & \ldots & 0 & 0 \\
B_{6} & B_{5} & B_{4} & 0 & \ldots & \cdots & 0 & 0 \\
& & & \vdots & 0 & \ldots & \cdots & 0 \\
& & & \vdots & & 0 & \cdots & 0 \\
& & & \vdots & & & \\
B_{k-3} & B_{k-4} & B_{k-5} & \ldots & B_{(k+1) / 2} & B_{(k-1) / 2} & 0 \\
B_{k-1} & B_{k-2} & B_{k-3} & \ldots & \cdots & \cdots & B_{(k+3) / 2} & B_{(k+1) / 2}
\end{array}\right)\left(\begin{array}{c}
B_{1} \\
B_{2} \\
B_{3} \\
\vdots \\
\vdots \\
\vdots \\
B_{(k-3) / 2} \\
B_{(k-1) / 2}
\end{array}\right)=\left(\begin{array}{c}
E_{3} \\
E_{5} \\
E_{7} \\
\vdots \\
\vdots \\
\vdots \\
E_{k-2} \\
E_{k}
\end{array}\right)
$$

when k is odd, or

$$
\begin{aligned}
& \left(\begin{array}{cccccccc}
\frac{1}{2}\left(B_{1}+1\right) & 0 & 0 & \ldots & \ldots & \ldots & 0 & 0 \\
B_{3} & \frac{1}{2}\left(B_{2}+1\right) & 0 & \ldots & \ldots & \ldots & 0 & 0 \\
B_{5} & B_{4} & \frac{1}{2}\left(B_{3}+1\right) & 0 & \ldots & \ldots & 0 & 0 \\
& & & \vdots & 0 & \ldots & \ldots & 0 \\
& & & \vdots & & 0 & \ldots & 0 \\
& & & \vdots & & & & \\
B_{k-3} & B_{k-4} & B_{k-5} & \ldots & \ldots & B_{k / 2} & \frac{1}{2}\left(B_{(k-2) / 2}+1\right) & 0 \\
B_{k-1} & B_{k-2} & B_{k-3} & \ldots & \ldots & B_{(k+4) / 2} & B_{(k+2) / 2} & \frac{1}{2}\left(B_{k / 2}+1\right)
\end{array}\right) \\
& \times\left(\begin{array}{c}
B_{1} \\
B_{2} \\
B_{3} \\
\vdots \\
\vdots \\
\vdots \\
B_{(k-2) / 2} \\
B_{k / 2}
\end{array}\right)=\left(\begin{array}{c}
E_{2} \\
E_{4} \\
E_{6} \\
\vdots \\
\vdots \\
\vdots \\
E_{k-2} \\
E_{k}
\end{array}\right)
\end{aligned}
$$

when k is even.

For example, if $k=13$,

$$
\left(\begin{array}{cccccc}
B_{2} & 0 & 0 & 0 & 0 & 0 \\
B_{4} & B_{3} & 0 & 0 & 0 & 0 \\
B_{6} & B_{5} & B_{4} & 0 & 0 & 0 \\
B_{8} & B_{7} & B_{6} & B_{5} & 0 & 0 \\
B_{10} & B_{9} & B_{8} & B_{7} & B_{6} & 0 \\
B_{12} & B_{11} & B_{10} & B_{9} & B_{8} & B_{7}
\end{array}\right)\left(\begin{array}{l}
B_{1} \\
B_{2} \\
B_{3} \\
B_{4} \\
B_{5} \\
B_{6}
\end{array}\right)=\left(\begin{array}{c}
E_{3} \\
E_{5} \\
E_{7} \\
E_{9} \\
E_{11} \\
E_{13}
\end{array}\right),
$$

or if $k=12$,

$$
\begin{aligned}
& \left(\begin{array}{cccccc}
\frac{1}{2}\left(B_{1}+1\right) & 0 & 0 & 0 & 0 & 0 \\
B_{3} & \frac{1}{2}\left(B_{2}+1\right) & 0 & 0 & 0 & 0 \\
B_{5} & B_{4} & \frac{1}{2}\left(B_{3}+1\right) & 0 & 0 & 0 \\
B_{7} & B_{6} & B_{5} & \frac{1}{2}\left(B_{4}+1\right) & 0 & 0 \\
B_{9} & B_{8} & B_{7} & B_{6} & \frac{1}{2}\left(B_{5}+1\right) & 0 \\
B_{11} & B_{10} & B_{9} & B_{8} & B_{7} & \frac{1}{2}\left(B_{6}+1\right)
\end{array}\right) \\
& \quad \times\left(\begin{array}{l}
B_{1} \\
B_{2} \\
B_{3} \\
B_{4} \\
B_{5} \\
B_{6}
\end{array}\right)=\left(\begin{array}{c}
E_{2} \\
E_{4} \\
E_{6} \\
E_{8} \\
E_{10} \\
E_{12}
\end{array}\right) .
\end{aligned}
$$

In this model, the number of terms for any alkene is one as compared to 249 terms for E_{30} and 551 terms for E_{40} using the Henze-Blair algorithm. The number of constitutional isomers, E_{k}, from $k=2$ to 50 , is shown in table 1 . All the results, for $k=2$ to 30 , are identical to that of Henze and Blair [5], and the results for $k=31$ to 50, are identical to that of Knop et al. [7]. A computer program written in Pascal is available on request.

It is interesting to note that B_{k} is equivalent to T_{k+1} of the alkyne series [1], where T_{k} is the number of constitutional isomers of an alkyne molecule of carbon content k. This is not unexpected as both isomers of the two homologous series are enumerated from alkyl alcohols by the same algorithm, but differing by one carbon atom. A mathematical relationship can be established between the number of isomers of alkenes and alkynes by substituting T_{k+1} for B_{k} in the above equations. We have $E_{k}=T_{2} \cdot T_{k}+T_{3} \cdot T_{k-1}+T_{4} \cdot T_{k-2}+\cdots+(1 / 2) \cdot T_{(k+2) / 2} \cdot\left(T_{(k+2) / 2}+1\right) \quad$ when k is even, or
$E_{k}=T_{2} \cdot T_{k}+T_{3} \cdot T_{k-1}+T_{4} \cdot T_{k-2}+\cdots+T_{(k+1) / 2} \cdot T_{(k+3) / 2} \quad$ when k is odd.

Finally, we can use a matrix equation to describe the relationship between the number of constitutional isomers of alkynes and alkenes. We have

$$
\left(\begin{array}{cccccccc}
T_{3} & 0 & 0 & \ldots & \cdots & \ldots & 0 & 0 \\
T_{5} & T_{4} & 0 & \ldots & \ldots & \cdots & 0 & 0 \\
T_{7} & T_{6} & T_{5} & 0 & \ldots & \cdots & 0 & 0 \\
& & & \vdots & 0 & \ldots & \ldots & 0 \\
& & & \vdots & & 0 & \ldots & 0 \\
& & & & & & & \\
T_{k-2} & T_{k-3} & T_{k-4} & \ldots & \ldots & T_{(k+3) / 2} & T_{(k+1) / 2} & 0 \\
T_{k} & T_{k-1} & T_{k-2} & \cdots & \cdots & \cdots & T_{(k+5) / 2} & T_{(k+3) / 2}
\end{array}\right)\left(\begin{array}{c}
T_{2} \\
T_{3} \\
T_{4} \\
\vdots \\
\vdots \\
T_{(k-1) / 2} \\
T_{(k+1) / 2}
\end{array}\right)=\left(\begin{array}{c}
E_{3} \\
E_{5} \\
E_{7} \\
\vdots \\
\vdots \\
\vdots \\
E_{k-2} \\
E_{k}
\end{array}\right)
$$

when k is odd, or

$$
\begin{aligned}
& \left(\begin{array}{cccccccc}
\frac{1}{2}\left(T_{2}+1\right) & 0 & 0 & \ldots & \ldots & \ldots & 0 & 0 \\
T_{4} & \frac{1}{2}\left(T_{3}+1\right) & 0 & \ldots & \ldots & \ldots & 0 & 0 \\
T_{6} & T_{5} & \frac{1}{2}\left(T_{4}+1\right) & 0 & \ldots & \ldots & 0 & 0 \\
& & & \vdots & 0 & \ldots & 0 & 0 \\
& & & \vdots & & 0 & \ldots & 0 \\
& & & \vdots & & & & \\
T_{k-2} & T_{k-3} & T_{k-4} & \ldots & \ldots & T_{(k+2) / 2} & \frac{1}{2}\left(T_{k}+1\right) & 0 \\
T_{k} & T_{k-1} & T_{k-2} & \ldots & \ldots & T_{(k+6) / 2} & T_{(k+4) / 2} & \frac{1}{2}\left(T_{(k+2) / 2}+1\right)
\end{array}\right) \\
& \times\left(\begin{array}{c}
T_{2} \\
T_{3} \\
T_{4} \\
\vdots \\
\vdots \\
\vdots \\
T_{k} \\
T_{(k+2) / 2}
\end{array}\right)=\left(\begin{array}{c}
E_{2} \\
E_{4} \\
E_{6} \\
\vdots \\
\vdots \\
\vdots \\
E_{k-2} \\
E_{k}
\end{array}\right)
\end{aligned}
$$

when k is even.

Acknowledgements

The author thanks the referees for helpful suggestions and valuable comments.

References

[1] D.D. Coffman, C.M. Blair and H.R. Henze, The number of structurally hydrocarbons of the acetylene series, J. Am. Chem. Soc. 55 (1933) 252-253.
[2] C.C. Davis, K. Cross and M. Ebel, Computer calculation of alkane isomers, J. Chem. Educ. 48 (1971) 675.
[3] H.R. Henze and C.M. Blair, The number of structurally isomeric alcohols of the methanol series, J. Am. Chem. Soc. 53 (1931) 3042-3046.
[4] H.R. Henze and C.M. Blair, The number of isomeric hydrocarbons of the methane series, J. Am. Chem. Soc. 53 (1931) 3077-3085.
[5] H.R. Henze and C.M. Blair, The number of structurally isomeric hydrocarbons of the ethylene series, J. Am. Chem. Soc. 55 (1933) 680-686.
[6] H.R. Henze and C.M. Blair, The number of structural isomers of the more important types of aliphatic compounds, J. Am. Chem. Soc. 56 (1934) 157.
[7] J.V. Knop, W.R. Müller, K. Szymanski and N. Trinajstic, Computer Generation of Certain Classes of Molecules (Association of Chemists and Technologists of Croatia, Zagreb, 1985).
[8] D. Perry, The number of structural isomers of certain homologs of methane and methanol, J. Am. Chem. Soc. 54 (1932) 2918-2920.
[9] R.C. Read, The enumeration of acyclic chemical compounds, in: Chemical Applications of Graph Theory, ed. A.T. Balaban (Academic Press, New York, 1976) pp. 25-61.
[10] N. Trinajstic, Chemical Graph Theory (CRC Press, 1992).

[^0]: © J.C. Baltzer AG, Science Publishers

